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USING SPECTRAL ESTIMATION TECHNIQUES IN ADAPTIVE
PROCESSING ANTENNA SYSTEMS

INTRODUCTION

Improved spectral estimation techniques are an emerging technology which derives largely from
modern spectral estimation theory of the past decade and adaptive array processing techniques [1,2,31.
Coupled with the phenomenal advances in digital processing, these techniques are becoming a valuable
asset for adaptive array antenna systems. Their value lies in the considerable amount of additional use-
ful information which they can provide about the environment while using only a relatively small
number of degrees-of-freedom (DOF). For example, current spectral estimation algorithms can pro-
vide asymptotically unbiased estimates of the number of interference sources, source directions, source
strengths, and any cross-correlations (coherence) between sources [4,51. Such information can then be
used to track and "catalogue" interference sources, hence assign adaptive DOF.

These newer techniques are not viewed as a "superresolution" replacement for more conventional
estimation methods such as mainbeam search, analogue beamformers, or spatial discreet Fourier
transforms (DFT); but rather, the new technology is considered complementary to the other methods
and best used in tandem. For example, "superresolution" techniques cannot compete with the speed of
a DFT. Some comparisons of the various methods may be found described in the literature [3,5,61.

The purpose of this report is to present two conceptual application areas that use spectral estima-
tion techniques, partially-adaptive low-sidelobe antennas, and fully-adaptive tracking arrays. In a par-
tially adaptive array only a part of the DOF, array elements or beams, is individually controlled adap-
tively [7,8,91. Obviously, the fully adaptive configuration is preferred since it offers the most control
over the response of the antenna system. But, when the number of elements or beams becomes
moderately large (hundreds), the fully adaptive processor implementation can become prohibitive in
cost, size, and weight.

This report is divided into three principal parts. The second section of this report discusses
partially-adaptive, low-sidelobe antennas with the focus upon a constrained beamspace system. In the
third section of the report, the source estimation and beam assignment from superresolution techniques
are considered; and in the fourth section, an all-digital, fully-adaptive tracking array concept is dis-
cussed. Several Appendices are also used for referral of the more tedious details.

PARTIALLY-ADAPTIVE LOW-SIDELOBE ANTENNAS

The antenna system, addressed in this section, is assumed to be a moderately large aperture array
of low-sidelobe design wherein the investment is already considerable and one simply could not afford
to make it fully adaptive. The assumption of low-sidelobes (30 dB or better) is intended to give us
good initial protection against modest interference sources and to reduce the problems from strong
sources, i.e., in regard to the number of adaptive DOF required and the adaptive dynamic range of the
processor. Thus, retention of the low sidelobes is considered a major goal in our adaptive system. In
the discussion that follows it is shown that using improved spectral estimation techniques in such a sys-
tem can result in the following benefits over a fully adaptive array system:

Manuscript approved May 17, 1985.
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a. Reduction in overall cost because relatively few adaptive DOF are implemented.

b. Simple adaptive weight constraints permit minimal degradation of the mainbeam and sidelobe
levels.

c. Reduction in computation burden.

d. Considerably faster adaptive response.

e. Compatibility with a larger number of adaptive algorithms, including analogue versions.

f. Greater flexibility in achieving a "tailored" response due to greater information available.

On the negative side, a partially-adaptive system can never be guaranteed a cancellation perfor-
mance equal to that of a fully adaptive array, and will deteriorate abruptly in performance when the
interference situation exceeds its adaptive DOF. These risks are an inherent part of the package and
must be carefully weighed for any specific system application.

Low-Sidelobe Eigenvector Constraint

In this section we review how unconstrained adaptive arrays can experience very "noisy" sidelobe
fluctuations and mainbeam perturbations when the data observation/integration time is not long
enough, even though the quiescent mainbeam weights are chosen for low sidelobes. Consider the sim-
ple schematic shown in Fig. 1, and let us compute the complex adaptive element weights Wk from the
well-known Sample Matrix Inverse (SMI) algorithm [9,10] as expressed in the following matrix nota-
tion,

where: W = 1 .R1 S (1)
W is the adaptive weights vector,
R is the sample covariance matrix,
S * is the quiescent mainbeam weights vector, and ,u is a

constant.

* denotes the conjugate of a complex vector or matrix.

OUTPUT

Fig. I - Schematic of adaptive array

Furthermore, the sample covariance matrix is computed via the simple "block" average taken over N
snapshots,

R =- N 2 [ E(n)E(n)*tJ, (2)
N=

2
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where E(n) is the element signal data vector received at the nth time sampling. (See Appendix A for
the description of snapshot signal model.) The data observation/integration time in (2) is the parame-
ter N. If R is estimated over a lengthy observation time, like thousands of snapshots, then the sidelobe
fluctuations from W updates will be relatively small. However, practical system usage often demands
short observation times on the order of hundreds of snapshots or even less.

Figure 2 illustrates a typical adapted pattern behavior for independent estimates of R using N =
256 snapshots per update for the case of three 30 dB noncoherent sources located at 14, 18 and 220.
The antenna aperture chosen for this example is a 16-element linear array with half-wavelength element
spacing and a 30 dB Taylor illumination incorporated in S*. The adaptive algorithm maintains the
mainbeam region and successfully nulls out the interference sources, but it also raises the sidelobe lev-
els elsewhere. The adaptive patterns are in continual fluctuation in the sidelobe regions and may
exceed the quiescent sidelobe level by a considerable margin. Also, the mainbeam suffers a significant
modulation which would degrade tracking performance. These effects worsen as the value of N
decreases.

To understand the reason for this undulating pattern behavior, it is helpful to analyze the
optimum weights in terms of eigenvalue/eigenvector decomposition. Appendix B contains a derivation
of such a decomposition for Eq. (1), and we reproduce Eq. (B-18) below:

W =t ,U S *-yt 2 |ajej (3)
where: 'f J

a, = eltS*

t denotes the transpose of a vector or matrix. The /37 and ej are the eigenvalues and eigenvectors,
respectively, of the sample covariance matrix, and 820 is equal to receiver channel noise power level.
Equation (3) shows that W consists of two parts: the first part is the quiescent mainbeam weight S*;
the second part, which is subtracted from S*, is the summation of weighted orthogonal eigenvectors.
This is a clear expression of the fundamental principle of pattern subtraction which applies in adaptive
array analysis [9,11].

We introduce the term principal eigenvectors (PE) to mean those eigenvectors which correspond to
unique eigenvalues generated by the spatial source distribution; and the term noise eigenvectors to mean
those eigenvectors which correspond to the small noise eigenvalues generated by the receiver channel
noise contained in the finite R estimates. The PE are generally rather robust and tend to remain rela-
tively stable from one data trial to the next, whereas the noise eigenvectors tend to fluctuate consider-
ably because of the inherent random behavior of noise. This difference in behavior is illustrated in Fig.
3 for the three source case described above; wherein there are three PE and thirteen noise eigenvectors
associated with each R estimate. Figure 3(a) shows the stability of the three PE for nine trials, and Fig.
3(b) shows the random behavior of typical noise eigenvectors for the exact same trials. Thus, we
would expect that the sidelobe undulations in Fig. 2(b) are associated primarily with the noise eigenvec-
tors. This thesis is verified in Fig. 4, which illustrates the adapted patterns resulting from Eq. (3) when
only the PE are subtracted.

The above adaptive array pattern behavior leads to the following observations for source distribu-
tions which do not encroach upon the mainbeam and involve a small number of the available degrees-
of-freedom (DOF):

a. It is possible to retain low sidelobes in the adapted patterns, even with short observation times,
by constraining our algorithm, Eq. (3), to utilize only the PE. The weight solution is unique and there-
fore stable.

3
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(a) Quiescent mainbeam pattern, 30 dB Taylor weighting

P

U
E
R

I
N

D-e
E n
C
I'/
B / ' . '.
E 
L -

S-30- ~ ~ ~ ~ .

SPATIAL ANGLE IN 6EGOEES

(b) Typical adapted patterns, nine update trials plotted

Fig. 2 - Fully adaptive 16-element linear array, SMI algorithm with R estimated from 256
snapshots per update, three 30 dB non-coherent sources located at 14, 18, and 22°
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(b) Typical noise eigenvectors Nos. 4, 10, and 16

Fig. 3 - Plots of principal eigenvectors (PE) and noise eigenvectors computed from the R
estimates associated with the three-source case of Fig. 2, nine update trials
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Fig. 4 - Typical adapted patterns resulting from the constraint
of utilizing only the PE, three-source case of Fig. 2

b. Utilizing only the PE is tantamount to operating our adaptive system in beamspace (as opposed
to element space) with a set of weighted orthogonal canceller beams.

c. The fully adaptive array automatically forms and "assigns" its PE canceller beams to cover the
interference source distribution, with one beam per each DOF needed.

Therefore, we have set forth a low-sidelobe eigenvector constraint algorithm for this type of res-
tricted interference situation.

Low-Sidelobe Constraints for a General Beamformer

Consider next a more interesting configuration which is shown by the schematic diagram in Fig.
5, where we represent an adaptive array system operating in beamspace so as to have available some
pre-adaptation spatial filtering. Applebaum and Chapman [8,9,12] were the first to describe beamspace
systems of this type, using a Butler matrix [131 beamformer, wherein the vector of the beamformer
outputs, E, may be expressed as follows:

E = WE (4)

where B is a KxK matrix containing the beamformer element weights (see Appendix C). Other
descriptions of beamspace systems are also available in the literature [9,14,15,16], of which Adams et
al. [151, is particularly germane to our discussion. Chapman [8] pointed out that when used in a
partially adaptive configuration, such beamspace systems are susceptible to aperture element errors and
cannot arbitrarily compensate the random error component of their sidelobe structure. This makes it
necessary to control element errors in accordance with the quiescent mainbeam sidelobe level desired,
and fits into our initial assumption of low-sidelobe design as mentioned earlier. A separate weighted
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Fig. 5 - Beamspace adaptive array with a separately weighted mainbeam

mainbeam summing is indicated which may be obtained either by coupling into the beamformer out-
puts as shown, or by coupling off from the elements and providing suitable phase shifters for steering
plus a corporate feed network. Our purpose here is to examine the sidelobe performance of such a
partially-adaptive beamspace system in which element errors are kept low and beamformer beams are
subjected to simple constraints.

Spatial estimation data on the interference source distribution shall determine which beamformer
beams are to be adaptively controlled. Such beams are defined herein as assigned beams, and the idea
is to assign only enough beams to accommodate the DOF required by the source distribution. When-
ever the two are equal, the adaptive weight solution is unique and we avoid adding any extra "noisy"
weight perturbations. The reader will recognize that we are attempting to replace the PE beams of the
previous section, Low-Sidelobe Eigenvector Constraint, with assigned beams from our general beam-
former. Thus, we are defining a partially-adaptive array which will utilize only a relatively small
number of its available DOF. In addition to this assigned beam constraint, we seek to limit the adap-
tive weights of assigned beams to a maximum level, fy, which was chosen to exceed the mainbeam
sidelobe level by only a few dB. This prevents an excessive rise in adaptive sidelobe level, including
the condition where the number of assigned beams exceeds the DOF required.

y represents the product of assigned beam gain and adaptive weight magnitude, so that we have
the option of working with beamformer beams which are considerably decoupled/attenuated.

An equation formulation may be expressed in terms of the same pattern subtraction principle as
used in Eq. (3) for K beams,

K
Wo=S*- Y Wkbk

k=1
(5)
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where:

| Wk |< y for J assigned beams

Wk = 0 for all other beams

and bk is the kth Butler matrix beam element-weight vector. When Wk = 0, that beam port is essen-
tially disconnected from the output summation and it is much to our advantage to reduce the DOF of
the adaptive weight processor accordingly, i.e., this processor reduction relates directly to the computa-
tional burden, response time, sidelobe degradation, and overall cost mentioned earlier. For example,
utilizing the SMI technique described in Eqs. (1) and (2), we would now have the advantage that our
sample covariance matrix of signal inputs, R, involves only the J assigned beams and its dimensions
reduced from KxK to JxJ, thereby greatly easing the computation burden involved in obtaining its
inverse [9]. The equivalent "steering vector", A, per Applebaum [7] is also reduced to dimension J and
consists of the cross-correlation between the mainbeam signal V and the J assigned beam outputs, Y,

l N
A= Y, V(n)Y*(n). (6)

The jth assigned beam output for the nth snapshot signal sample is simply

Yj (n) = EE (n)bk, k set by j (7)

where the particular value of k must be selected for the jth assigned beam. Our J dimension adaptive
weight solution thus becomes,

W = R-'A. (8)

Equation (8) gives us the J assigned beam weights required in Eq. (5). The proposed constraint
I Wk I ( y can be applied directly to the solution from (8), but be aware that this is a "hard" constraint
and the results will not be optimal when the limit is exceeded.

A softer, more flexible constraint for our purposes is one suggested by Brennan* based upon Ows-
ley [17], where weights are selected which simultaneously minimize both the output and the sum of the
weight amplitudes squared, i.e.,

minimize lV - W'Y 2 + aWtW*.

where the overbar denotes averaging over N snaps. The solution is a simple modification to Eq. (8)
wherein

W= R + I A (9)

where:

a = i Trace[R].

We note here that Eq. (9) adds a small percentage of the average assigned beam power to the diagonal
terms of R. We also recall that y was selected to be close to the mainbeam sidelobe level. Although a
is a small percentage of the Trace [R], it is generally much larger than the receiver noise level, 130; this
domination over receiver noise by a constant will tend to severely dampen weight fluctuations due to
noise. Equation (9) deviates from the optimum Weiner weights and will result in a slightly larger out-
put residue, however, the cost is negligible compared to the remarkably stable results achieved from

*Private communication, L.E. Brennan, Adaptive Sensors, Inc.
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this rather simple constraint. It essentially permits the number of assigned beams to exceed the DOF
required, and yet retain low sidelobe levels.

Equations (5) through (9) were used in computing the adaptive pattern examples which follow. The
reader should recognize that the J dimension adaptive weight solution may be arrived at via any of the
current adaptive processing algorithms such as Howells-Applebaum [7], Gram-Schmidt [91, Sample
Matrix Inverse Update [18], etc.

When applying these constraints to our three-source case of. Fig. 2, we would assign beamformer
beams Nos. 10, 11, and 12 to cover the sources as illustrated in Fig. 6(a). These assigned beams are
then given a maximum gain level of about 5 dB above the -30 dB mainbeam sidelobes; thus, the
assigned beam weights are constrained to I Wk I < 0.055. All other Wk are set to zero. Typical resul-
tant adapted patterns are shown in Fig. 6(b),. where nine trials of 160 snapshots each are plotted. The
pattern stability is near-perfect for a unique solution like this, and note that the three sources have
been nulled with very little perturbation of the mainbeam sidelobes except in the immediate vicinity of
the sources. Since we are inverting a matrix of only 3x3 dimension in Eq. (8), for this case, it follows
that the number of snapshots processed per trial could be reduced by an order of magnitude [101 and
still obtain excellent results.

Figure 7 demonstrates how the adaptive weights will become noisy if we include even one extra
DOF beyond the unique solution. Beamformer beam No. 16 was deliberately added for the same case
as in Fig. 6, and we may note the consequent sidelobe fluctuations. However, if we use the "soft" con-
straint of Eq. (9) in solving for the weights, stable performance is again restored despite the extra DOF.
It may be of interest to the reader that for this particular example:

J =4
y = 0.045 (-27 dB)
Trace [R]/J = 10,350 10
a = 21j3d

Although not shown here, another example of interest is the case of using a two-beam cluster
(Nos. 11 and 12) to cancel a single 40 dB broadband source located at 22°. It was found that the source
could be adequately cancelled at bandwidths up to 15%.

Many other combinations of source distributions and assigned beams were tested to further verify
the technique, and the partially-adaptive performance was satisfactory provided that the assigned beams
were sufficient to cover the DOF demanded by the source distribution.

Interference Sources in the Mainbeam Region

Extension of the foregoing partially-adaptive array technique for mainbeam interference is
straightforward, provided we relax the constraint upon the value of y in Eq. (5). Obviously, the low-
sidelobe stratagem becomes secondary to the greater menace of an interference source coming in
through our high-gain. mainbeam. Low sidelobes could still be retained, if necessary, by implementing
a beamformer which is capable of producing a family of low-sidelobe assigned beams [151.

SOURCE ESTIMATION AND BEAM ASSIGNMENT

Modern spectral estimation techniques are a welcome addition to the conventional methods for
tracking and cataloging interference sources. They do not interfere with any functions of the main-
beam, and are capable of providing superior source resolution from fewer elements. The latter advan-
tage is obtained in part because we assumed low sidelobes for the mainbeam, i.e., the only sources that
require estimation are those few which are of sufficiently high SNR to get through the mainbeam
sidelobes. Resolution performance is always directly related to SNR, [2,5,61.

9
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(b) Typical adapted patterns, nine trials of 160 snapshots

Fig. 6 - Partially adaptive linear array of 16 elements, using three
assigned beams for the three source case of Fig. 2
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Fig. 7 - Partially adaptive linear array of 16 elements, using four
assigned beams for the three-source case of Fig. 2
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The principle for achieving source estimation from a small fraction of the aperture DOF has been
demonstrated via many techniques, both conventional and optimal [1,3,19]. It is not within the scope
of this report to attempt a comprehensive comparison of such techniques, but the point is important to
our concept so that an example of a half-aperture linear array estimator is given in this section. The
type of application envisioned is illustrated in Fig. 8, where we represent a KxK element aperture sys-

tem in which the adaptive beam DOF are to be assigned on the basis of estimates derived from two
orthogonal linear arrays of K/2 elements each. An extension of the 2D (two-dimension) beamspace
adaptive array system of Fig. 5 to the 3D system suggested by Fig. 8 permits several beamformer
options, including:

xxxxxxxxxxxx xxxxxx

ELEMENT ROW -

xx
x
x
x

xx
x
x
x

ELEMENT COLUMN-X

APERTURE ELEMENTS

xxxxxx xxx
xxxxxxxxx xxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxx

XXXXXXXXXXXXXXXX
xxxxxxxxxxxxxx

xxxxxxxxxxX XXXXX XX XXXXX X

Fig. 8 - (K x K) element aperture within
which row/column linear arrays couple into
source estimation processors

IT

RF

Fig. 9 - Typical RF receiver techniques associated
with A/D complex data sampling
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a. Two orthogonal 2D beamformers of which one is coupled into a row and the other coupled
into a column of elements.

b. A complete 3D beamformer [20] coupled into the aperture elements, perhaps on a thinned
basis.

The separate mainbeam must be summed from all K2 elements to attain the desired low sidelobes.

Although they involve relatively few elements from the aperture, the linear array estimators
represent a significant increase in system expense, because they are all-digital processing subsystems.
Typical RF receiver components required prior to the signal analogue-to-digital (A/D) converters are
shown in Fig. 9. The processing of the digital signals to estimate the sources may be carried out in
accordance with a number of spectral estimation algorithms available in the literature [1-6]. Appendix
B discusses several algorithms that were used in the simulations conducted for this report. For exam-
ple, Fig. 10 illustrates a comparison plot of our mainbeam search scan vs half-aperture eigenanalysis
processing results for the 16-element linear array case of Fig. 2.

30-

HALF-APERTURE MAINBEAM SCAN
EIGENANALYSIS
PROCESSING
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E
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L
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Fig. 10 - Comparison of mainbeam scan vs half-aperture eigenanalysis
source estimation for three source case of Fig. 2

Once the source estimation information is available, we can proceed by assigning beamformer
beams via a computer logic program. For the simulations reported .in this report, a Fortran IV com-
puter code named "BEAMASSIGN" was developed which accepts source information updates, compares
the new data against a source directory kept in memory, computes track updates for sources already in
memory, determines priority ranking, and assigns beams to cover the sources of highest priority. An
important point to note is that beam assignment does not require great accuracy, i.e., a half-beamwidth
is usually close enough. Also, clusters of two or three adjacent beams may be assigned for doubtful
cases.

13
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A demonstration of beam assignment was conducted with a moving source simulation involving
the 16-element linear array of Fig. 2. Four sources of unequal strength were set up in the farfield,
traveling in criss-crossing patterns. Two of the sources are of 30 dB strength with start angles of 3.0
and 39.00, and two are of 43 dB strength with start-angles of 5.0 and 70.00. The estimation of the
scanned mainbeam for this example is shown in Fig. 11 (a). Each time-unit plot cut is computed from
R averaged over 160 snapshots,

Po = sks' (10)

where S * is the mainbeam steering vector used to generate the display plot. As expected, this simple
Fourier output is dominated by the two stronger sources. In contrast, Fig. 11(b) shows the source esti-
mation derived from eigenanalysis processing using only half of the aperture (8 elements). Note that
the "superresolution" characteristics of this type of optimal estimation produces excellent source track-
ing, even in the vicinity of cross-over of three of the sources.
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(a) Conventional mainbeam scanning, 16 elements,
30 dB Taylor illumination
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(b) Half aperture eigenanalysis source estimation

Fig. II - Estimation of four moving sources via mainbeam scan and half aperture eigenanalysis algorithm
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The results from the use of the source information data contained in Fig. 11(b) to continuously
update beam assignments are illustrated in the adapted pattern cuts shown in Fig.. 12(a). Note that the
mainbeam remains steady, and the sidelobes seldom exceed their quiescent 30 dB peak level, despite
the drastic shifting of the nulls as the moving sources criss-cross in the sidelobe region. In contrast,
Fig. 12(b) illustrates the adapted pattern cuts obtained when we utilize the SMI algorithm weights with
the array fully adaptive. Although the source cancellation is excellent, the mainbeam suffers significant
modulation and the peak sidelobe levels rise considerably.

(a) Partially adaptive, constrained, assigned beams,
32 snapshots processed per plot cut
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Fig. 12 - Adaptive patterns for 16 element linear array, SMI algorithm, four moving sources case of Fig. 11
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AN ADAPTIVE ARRAY TRACKING APPLICATION

A second area where spectral estimation techniques can provide valuable assistance is that of

adaptive array tracking systems. Here we are dealing with the problem of attempting to track targets
under the condition of having interference sources present in the mainbeam region. Some early pro-
posed solutions in this area evolved from the growing adaptive array technology of the 1970's. For
example, a paper by White [21] discusses the radar problem of tracking targets in the low-angle regime,
where conventional tracking radars encounter much difficulty because of the presence of a strong
surface-reflected ray.

The first extension of fully adaptive arrays to angle estimation in external noise fields is the con-

tribution of Davis et al. [22], who developed an algorithm based on the outputs of adaptively distorted
sum and difference beams. The adaptive beams filter (null) the external noise sources, and distortion
correction is then applied in the resultant monopulse output angle estimate. Their work is particularly
appropriate as a starting point for this section, where we discuss the advantages of using spectral estima-
tion techniques in an all-digital, fully adaptive, array tracking system. Reference [15] is also pertinent.

Coherent Spatial Interference Sources

The existence of significant coherence between spatial sources as, for example, in multipath situa-
tions involving a specular reflection, continues to represent a serious problem area even for a fully
adaptive tracking array.

Reasons include:

a. Coherent signals in space are not stationary [2,5,23].

b. Adaptive systems may perform cancellation via weight phasing rather than null steering
[5,23,24,25,26].

c. Adaptive tracking beam distortion is highly sensitive to coherent signal phasing.

d. Signal fading under anti-phase conditions.

To demonstrate these reasons, adaptive characteristics were computed for a 16-element linear array for
an interference case in which there are two 13 dB coherent sources in the mainbeam region. There is
also a third source, non-coherent, in the nearby sidelobe region that acts as a stable null comparison
point.

In Fig. 13(a), we illustrate the severe changes in our mainbeam caused by variation of the phase
shift between the two coherent sources. The quiescent mainbeam has the same Taylor weighting as
that in Fig. 2(a). Figure 13(b) illustrates the spatial insertion loss associated with the three adaptive
weightings involved. Note that for source phasing of 00 and 1800, the adaptive weights do not achieve
cancellation by steering nulls onto the coherent sources, but rather by the weight phasing itself. The
array output was driven down to receiver noise level in all three cases. The plots for 900 phase are very
similar to what one would obtain if all three sources were non-coherent, i.e., cancellation is achieved by
adaptive null steering, in this instance.

Such severe sensitivity to coherent source phasing in the mainbeam region produces different dis-
tortions in tracking estimates from adaptive F (sum) and A (difference) patterns, as shown in Fig. 14.
Appendix C contains the equation development for this type of plot; however, the main point here is to
show the considerable changes in track angle estimates due to phase variation. Once again, if all three
sources were non-coherent, the distortion plot would be stable and very similar to the one shown for
the 90° phase.
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(a) Typical adaptive patterns for three coherent phases

-15 0 15

SPATIAT ANGLE IN DEGREES

(b) Insertion loss associated with adaptive weighting

Fig. 13 - Mainbeam interference adaptive characteristics fbr 16 element linear array, SMI
algorithm, 256 snapshots, three interference sources: one 10 dB non-coherent at -21°, and two 13
dB coherent at -7.6 and -4.0°
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Fig. 14 -Track estimate distortion resulting from adaptive E and
A tracking beams for coherent interference in the mainbeam
region, same case as Fig. 13

All-Digital Tracking System Concept

The separate estimation of interference source data (total number, power levels, location angles,
coherence) and its utilization for improving the output SNR of desired signal detections is a mode of
system operation that has been addressed in the literature a number of times for various applications
[5,6,15,16]. In this section, we briefly review such a system wherein the estimated data is used to drive
a fully adaptive tracking processor [27]. The concept is illustrated in Fig. 15. Starting on the left-hand
side, the system continuously computes/updates a sample covariance matrix R. Of particular signifi-
cance is that R may be dimensioned either equal to or less than the total number of array elements,
i.e., the model order of the estimate is selectable per subaperture averaging option choice. Off-line pro-
cessing on R is then conducted at periodic intervals to estimate the locations and relative power levels
of interference sources via the most appropriate spectral estimation algorithms. The central processor
unit (CPU) then applies these data to the computation of optimized adaptive spatial filter weights for
the right-hand side of Fig. 15. Separation of source estimation from adaptive filter weight computation
can be done accurately only in an all-digital processing system, but it permits the following benefits:

a. Estimation of coherent interference source locations for deliberate adaptive null filter place-
ment.

b. Remembering slow-changing or time-gated sources, and colored-noise distributions.

c. Anticipating sources from apriori data inputs.
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Fig. 15 - All-digital adaptive array tracking system concept

d. Flexibility in time-domain control of the filtering to counter interference time strategies.

e. Tracking/cataloging/ranking sources.

f. Efficient assignment of available DOF.

g. Compatible with fast-response adaptive algorithms, i.e., parallel algorithm processing.

The right-hand side of Fig. 15 indicates a fast-memory storage capability that is intended to permit
selected time delays of the snapshots for feeding into the filter weights. The idea is to synchronize
selected snapshots with their filter weight updates, if possible.

Finally, the filtered signal output residue is fed into a beamformer which is weighted to produce
the desired search and monopulse track beams for target detection and tracking. The algorithms of
Davis et al., [22], may be applied for estimating the target signal angle of arrival, based upon the out-
puts of adaptively distorted sum and difference beams. Appendix C discusses the equivalence of such
beams to the concept shown in Fig. 15.

As an example, let us apply this concept to the coherent source case used in Figs. 13 and 14
wherein we would use a 16-element linear array feeding into our all-digital processor. An appropriate
estimation algorithm is that of forward-backward subaperture spatial smoothing [5,28,29] combined
with eigenanalysis. Appendix D describes the rudiments of this algorithm, and the results are plotted
in Fig. 16 in comparison with a scanned mainbeam output. From this source estimation data, we can
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Fig. 16 - Comparison of mainbeam scan vs spatial smoothing processing for coherent source case
of Fig. 13, PEGS eigenanalysis, 256 snapshots per trial

construct an equivalent covariance matrix dimensioned for the full aperture per the procedure given in
Appendix A, and we can compute its inverse for obtaining the adaptive filtering. If we define the con-
structed covariance matrix as M, then its inverse may be viewed as a matrix set of adaptive beantformer
filter weights to give us the filtered output nth snapshot vector Ef (n),

Ej(n) = EVn) M-1 (11)

Conventional beam weighting S* can then be applied to the filtered output residue to obtain the final
output for the nth snapshot,

Yo(n) = EJ(n)S* = Et(n)M- 1 S* (12)

or

Yo(n) = E'(n)WO

where W0 is the familiar optimum Wiener filter weight.

Note that the constructed covariance matrix, M, permits options such as adding synthetic sources
or changing power levels. Furthermore, since it is always Toeplitz, solutions may be simplified some-
what.

For the current example, the computed adaptive characteristics would be very similar to those
plotted in Figs. 13 and 14 for the 90° phase angle. Other examples along with a more detailed discus-
sion of the processing may be found in [27].

CONCLUSIONS

Two conceptual application areas have been presented for using spectral estimation techniques;
partially-adaptive low-sidelobe arrays, and fully-adaptive tracking arrays. In both cases, improved spec-
tral estimation techniques are used separately to acquire information about the interference environ-
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ment which is beyond that ordinarily available in a conventional adaptive array. Examples discussed
included superresolution effects, relative power level determination, estimation of coherent sources, and
the tracking/cataloging/ranking of sources. For the partially-adaptive area, the information was used
for efficient assignment of a limited number of DOF in a beamspace constrained adaptive system to
obtain the following benefits (as compared to a fully adaptive array): retention of low sidelobes plus a
stable mainbeam; considerably faster adaptive response; reduction in overall cost; and greater flexibility.
On the negative side, we incur the risk of possible inferior cancellation performance if the interference
source situation is not adequately covered by the assigned DOF.

For the fully adaptive tracking array area, the information is used in an all-digital processing sys-
tem to obtain the benefits of stable nulling of coherent interference sources in the mainbeam region,
efficient assignment of the available DOF, and a far greater flexibility in the time-domain control of
adaptive filtering strategy.
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Appendix A
SNAPSHOT SIGNAL MODEL

Consider a simple linear array of K elements as shown in Fig. Al. The received signal samples
are correlated in both space and time, giving rise to a two-dimensional data problem, but we convert
this to spatial domain only by assuming that narrow-band filtering precedes our spatial domain process-
ing. Bandwidth can be handled when necessary via a spectral line approach [Al] or tapped delay lines
at each element [A2], but we did not consider such extra complication essential to the basic purposes of
this analysis. Thus, the postulated signal environment on any given observation consists of I narrow-
band plane waves arriving from distinct directions 0j. The RF phase at the kth antenna element as a
result of the ith source would be the product wiXk, where Xk is the location of the element phase
center with respect to the midpoint of the array in wavelengths, and Wi is defined as

w= 27r sin Oj. (Al)

SOURCE
DIRECTION

/~~~

/ " /RARRAY CENTER

4 4 2 3 4 5 6 7 8

XI~~~~~~~~~~~~~~~~~~~~

Fig. Al -- Geometry of linear array and signal wavefront

This notation is deliberately chosen to have the spatial domain dual of sampling in the time domain, so
that the reader may readily relate to the more familiar spectral analysis variables. Sin 0i is the dual of a
sinusoid frequency fi, and the Xk locations are the dual of time sampling instants tk. Note that if our
elements are equally spaced by a distance d, then Xk may be written,

XkI = I Xd | k | I I I /)

where A is the common RF wavelength. The ratio d a l become the dual of the sampling time T with
the cutoff frequency equal to half of the reciprocal.

23



w. F. GABRIEL

The complex amplitude of the ith source at the array midpoint phase center is pi, such that we can
now express the n th time-sampled signal at the kth element as,

Ek(n) = 'k (n) + Ap (n)gk(0,) exp (jwoiXk) (A3)
i-I

where gk (0i) is the element pattern response in the direction O, and 'Qk (n) is the nth sample from the
kth element independent Gaussian receiver noise. (The receiver noise component is assumed to be a
random process with respect to both the time index n and the element index k.) Equation (A3) per-
mits us to construct a convenient column vector of observed data in the form,

E(n) = Vp(n) + 'q(n) (A4)

El(n) VIl V21 I i v1 71(n)

E 2 (n) V1 2 IV 22 I IV 12 p 1 (n) 72n

E 3 (n) V1 3 V23 i V13 P2(n) 1733(n)

p(n)

EK (n) VIK I V2K I I VIK 71K (n)

where V is a K x I matrix containing a column vector v; for each of the I source directions; i.e.,

vik = gk(0i) exp (jXxiXk)* (AW)

Note that Eq. (A4) separates out the basic variables of source direction in the direction matrix V,
source baseband signal in the column vector p (n), and element receiver channel noise in the column
vector 71(n). The vector E(n) is defined as the nth snapshot, i.e., a simultaneous signal sampling
across all K-array elements at the nth time instant. These snapshots would nominally occur at the
Nyquist sampling rate corresponding to our receiver bandwidth [A3], so that a radar-oriented person
may view them as range bin time samplings. However, for source estimation purposes, they need not
necessarily be chosen from contiguous range bins, and for most applications it would be highly desir-
able to selectively time gate the snapshots used for source estimation. For this simple analysis, let us
postulate that the snapshots are gated at more or less arbitrary instants of time.

Over typical processing intervals, the directions of arrival will not change significantly, so that V is
a slowly changing matrix. In contrast, the signals p1(n) will generally vary rapidly with time, often
unpredictably, such that we must work with their statistical descriptions. It is assumed that the signals
are uncorrelated with receiver noise. Proceeding then from Eq. (A4), we can obtain the covariance
matrix R via application of the expected value operator, A, or ensemble average,

R = W[E (n)E ' (n)] (A6)

R = VPV' + N (A7)

where N = K[,9 (n),q(n) '], P = F[p (n)p (n)'], * is the complex conjugate, and t is the transpose. N
is a simple diagonal matrix consisting of the receiver channel noise power levels. The diagonal ele-
ments of P represent the ensemble average power levels of the various signal sources, and off-diagonal
elements can be nonzero if any correlation exists between the sources. Note that correlated far-field
signals can easily arise if significant specular reflection or diffraction multipath is present.
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Appendix B
EIGENVALUE/EIGENVECTOR DECOMPOSITION

When a signal is known to consist of pure sinusoids in white noise, an appropriate procedure to
find the unknown frequencies and powers is the Pisarenko spectral-decomposition procedure [B1i.
Although Pisarenko's method per se has not found widespread use, it has provided a fundamental
eigenanalysis basis for several closely related techniques which have demonstrated excellent perfor-
mance. Among these are the algorithms described by Reddi [B21, the MUSIC algorithm of Schmidt
[B3], the work of Bienvenu and Kopp [B4], the singular value decomposition (or principal eigenvector)
methods of Kumaresan and Tufts [B5,B6], the eigenassisted method of Evans et al. [B71, and the alge-
braic approach of Bronez and Cadzow [B8].

A key principle in all of these techniques is the geometric vector space relationships between the
spatial source vectors and the eigenvectors of the sample covariance matrix; so we begin our discussion
on this point. From the theory of matrices, we know that a positive definite Hermitian matrix such as
R of Eq. (A7), can be diagonalized by a nonsingular orthonormal modal matrix transformation which
shall be defined as the matrix Q. Furthermore, we know that the resulting diagonal components are
the eigenvalues of matrix R. In accordance with the usual eigenvalue problem statements,

IR-613I4- = o and Re, = pBe, , (Bi)

the f32 are the eigenvalues (real positive numbers) of R, I is the identity matrix, and ej are the associ-
ated eigenvectors. These eigenvectors, which are normalized to unit Hermitian length and are orthog-
onal to one another, make up the columns of the Q matrix,

ei2

Q= el e 2 e 3 ... eK where e,= (B2)

I1 I I

eK
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Diagonalization of R by the Q matrix transformation per Eq. (Bi) may be written,

p2 0 0 ..

0 1322 0

0 0 332 .
[Qt RQ] = [ =O8ij= (B3)

. . . P2

where 8 ij is the Kronecker delta symbol. One can readily show a construction of R from its orthonor-
mal components,

R =: Q[P?8u]Q* = 7 Kekk.(4

k= 1

Next, we introduce the term "principal eigenvector" (PE) to mean those eigenvectors which
correspond to the unique eigenvalues generated by the spatial source distribution: and the term "noise
eigenvector" to mean those eigenvectors which correspond to the small noise eigenvalues generated by
the receiver channel noise in Eq. (A7). Under ideal conditions, the noise eigenvalues are all identical
and equal to receiver channel noise power level 1&2, such that we can factor Eq. (B4) to emphasize the
PE,

R= (pi2_82 )eie;'l+, P' (B5)
1=1

where q is the number of PE. Comparing Eq. (B5) with Eq. (A7) we note that the noise diagonal
matrices are equal; i.e.,

132I =N (B6)

so that one may equate the source direction vectors with the PE,

VPVW' = |ii 12VivŽ = q (13 -p21)eiet*' (B7)

where the Pii 12 represents the expected power levels of uncorrelated sources. Equation (B7) embodies
the key principle that the PE are linear combinations of the source direction vectors and vice-versa. In
geometrical language, the vi define an I dimensional source vector space, and the principal e, span that
same vector space. Furthermore, since the noise eigenvectors are always orthogonal to the PE, then it
follows that the noise eigenvectors must occupy a subspace which is orthogonal to the source vector
space. To put it another way, if the noise eigenvectors are viewed as antenna array element weights,
then they should have pattern nulls at source direction angles because of their orthogonality. (Note the
vivid demonstration of this point in Fig. 3(b).) Despite the fact that Eq. (B7) is based on ideal assump-
tions, it turns out to be a valuable concept for formulating algorithms, perhaps because it is inherently a
noise-subtracted relationship, and the estimates of the PE are rather robust.
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When working with finite sets of data snapshots which are not ideal, a nontrivial problem area
arises in determining which eigenvectors to designate as principal, and which ones result from noise.
This important problem will be addressed after discussing the associated algorithms.

Eigenanalysis of Three Algorithms

Eigenvalue/eigenvector decomposition is now applied to three different spatial spectrum estima-
tion algorithms:

* the MLM (Maximum Likelihood Method),
* the MUSIC (Multiple Signal Classification), and
* the PEGS (Principal Eigenvector Gram-Schmidt).

Since these algorithms are dealt with in a very abbreviated manner in the report, the reader is
encouraged to consult the references given for a better description and understanding of the techniques
involved.

The MLM (Maximum Likelihood Method)

The maximum likelihood spectral estimate is defined as a filter designed to pass the power in a
narrow-band about the signal frequency of interest and to minimize or reject all other frequency com-
ponents in an optimal manner [B9,B10]. This is identical to the use of a zero-order mainbeam direc-
tional gain constraint in adaptive arrays [Bi311, where the spatial spectrum would be estimated by the
output residual power P0 from the optimized adapted array weights,

Po(o) = W tRWo. (B8)

Where W0 is the optimum adaptive Wiener filter weight, and

Wo = ,R-lS* (B9)

where S* is the usual mainbeam weight vector for steering angle 0, and tt is a complex number.
Under the zero-order gain constraint, we require StW0 = 1, whereupon A becomes

A= [SIR-IS*]-l. (B10)
Substituting A and W0 into Eq. (B8) results in

Po () = | StR-.S' *J (Bi )

Upon sweeping the steering vector S * for a given covariance matrix inverse, P0 (0) estimates the spatial
spectrum.

In terms of eigenvalue/eigenvector decomposition, we can take the inverse of Eq. (B3) and
express R-1 in the form,

R-1 = e-i eJt. (B12)

Here, we see that this older algorithm simply uses all of the eigenvalues/eigenvectors. One advantage
in this decomposition is that Eq. (B312) can be substituted into Eq. (Ri31) to form a simple summation
of eigenvector beams referenced to the receiver noise power level,I P0 o) __ 1; |6.| g (B13)

136 2 K ~1,,02

k=I 1/k
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where gk (O) = S'ek. This permits an insight into the peak values which occur at the nulls of the noise
eigenvector beams; i.e., we get an evaluation of relative source power level if the source location is
resolved.

The MUSIC (Multiple Signal Classification)

This algorithm was suggested by Schmidt tB3] to provide asymptotically unbiased estimates of the
number of signal sources, directions of arrival, strengths and cross correlations among the directional
waveforms, polarizations, and strength of noise/interference. His geometrical vector space description
and interpretation is clearly presented and was used as the basis for the one above. Essentially, this
MUSIC algorithm selects and uses only the noise eigenvectors to solve for the directions of arrival.
This is tantamount to approximating R-' in Eq. (Bll) by the noise eigenvectors only; i.e.,

let R- ~ f J| eje,' (B114)

where q is the number of principal eigenvectors. The same indexing would apply as noise eigenvector
beams in Eq. (B13), where we note that the ratio of eigenvalues would now become unity (or close to
it).

This algorithm does indeed produce very large peaks in P0 (0) for good covariance matrix esti-
mates, because of the aforementioned orthogonality of the noise eigenvectors to the source vector
space. Its performance is usually far superior to the older MLM algorithm in resolving closely spaced
source directions. In addition, Schmidt points out that once the directions of arrival have been found,
the direction matrix V, in Eq. (A4) and (A7) becomes available and may be used to compute the
source power matrix P. We form the special matrix U,

U = [V'Vh-1V' (B115)

and

UVPV*t U*1 = P.

If the matrix U exists or can be closely approximated, then we can apply it to the noise-subtracted
covariance matrix of Eq. (A7) to solve for P; i.e.,

P = U(R - N)U ' (B16)

Pi Pi Pi P2 ... PI *PI

P2*PI P2 P2 * P2 P

P1*P1 Pi*P2 *.. PI*PI

Note that the diagonal elements of P represent power estimates of the sources, and that the nonzero
off-diagonal elements represent estimates of the correlations existing between partially coherent
sources.
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The ability to solve for the power estimates is of great importance in distinguishing "false alarms"
and in selecting the sources of interest. We recommend References B7, B6, and B8 which are either
related to or give a comparative analysis of the MUSIC algorithm.

The PEGS (Principal Eigenvector Gram-Schmidt)

Several eigenvalue/eigenvector decomposition techniques described in References B7, B2, B6, and
B8 are based on the principal eigenvectors (PE) with some type of constraint imposed on the optimum
weight vector.

This subgroup of PE methods is of interest in the current work because of their generally superior
performance characteristics. An intuitive reasoning behind their use is that the estimates of the PE are
robust; i.e., they tend to remain relatively stable from one data record to the next, whereas the noise
eigenvectors tend to fluctuate because of noise perturbations. In addition, the PE methods are
inherently a noise subtraction technique similar to noise power cancellation algorithms which attempt to
remove the noise bias term that appears along the main diagonal of the covariance matrix.

Let us begin development of our PEGS algorithm by decomposing the inverse of the covariance
matrix as given in Eq. (B12), normalized by receiver noise power,

k=1- 2 I) ekek

= I- , t ' p d ]ejej '. (1317)

Substituting Eq. (B17) into Eq. (B9) results in the optimum Wiener weight,

WO - [I- X 1 32 J eiej S*

= '|S* 1 ± 22 Po aieij (B118)

where:

aj = e1*'S*,

,= ,u/,B , and
So = a quiescent array weight vector.

In the limit of noise-free data, Eq. (B18) is suggestive of a simple Gram-Schmidt vector subtrac-
tion from S* in which we would form an optimum weight that would be orthogonal to the PE, and
therefore, orthogonal to the source direction vectors per Eq. (B7). Thus, let us formulate a PEGS algo-
rithm by defining the optimum weight We from Eq. (B18) as

We = S - ajej (B19)

where:

ai = eS*.
We possesses the necessary orthogonality to noise-free source direction vectors,

<We, V;> = 0 (B20)
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and may readily incorporate the option of unit Hermitian length if desired,

1We 12 = 1. (B21)

The PEGS algorithm as applied in this report used an end-element weighting for S*; i.e.,

S [00, ... , 0, ]i.] (B22)

Culling Principal Eigenvalues

The number of principal eigenvalues is usually directly related to the number of sources which, in
practice, are not known and must be estimated. One of the early estimation techniques which has often
been used is the AIC (Akaike Information Criterion) [B12,B131. This criterion has been successfully
applied to many model identification problems in engineering and statistics, including the well known
problem of determining the order of an autoregressive (AR) process [B131. Recent work reported by
Wax and Kailath [B141 presents a new approach based on the AIC, which eliminates the need for any
subjective judgment in the decision process; i.e., the procedure does not require any subjectively chosen
threshold. This new approach was implemented during the current investigation and was found to be
very effective for most of the examples tested. In addition to the Wax-Kailath AIC approach, we also
used a second effective technique which is based on the following three processing operations:

* An initial decreasing-magnitude sort,
* Culling per coarse magnitude threshold, and
* Culling per sensitive threshold based on a quadratic curvefit predictor.

The entire procedure is listed in Ref. [BI1S as a Fortran IV computer code.

REFERENCES

Bi. V.F. Pisarenko, "The Retrieval of Harmonics from a Covariance Function," Geophys. J. (Royal
Astron. Soc.) 33, 1973, pp. 347-366.

B2. S.S. Reddi, "Multiple Source Location - A Digital Approach," IEEE Trans. Aerospace & Elect.
Sys., AES-15, Jan 1979, pp. 95-105.

B3. R. Schmidt, "Multiple Emitter Location and Signal Parameter Estimation," Proc. of the RADC
Spectrum Estimation Workshop, RADC-TR-79-63, Rome Air Development Center, Rome, NY,
Oct 1979, p. 243.

B4. E. Bienvenu and L. Kopp, Adaptive High Resolution Spatial Discrimination of Passive Sources,
Underwater Acoustics and Signal Processing (D. Reidel Publishing Co., Boston, 1981), pp. 509-
515.

B5. R. Kumaresan and D. Tufts, "Singular Value Decomposition and Spectral Analysis," Proc. of the
First ASSP Workshop on Spectral Estimation, McMaster University, Hamilton, Ontario, Canada,
2, Aug 1981, pp. 6.4.1-6.4.12.

B6. R. Kumaresan and D.W. Tufts, "Estimating the Angles of Arrival of Multiple Plane Waves," IEEE
Trans. Aerospace & Elect. Sys., AES-19, Jan 1983, pp. 134-139.

B7. J.E. Evans, J.R. Johnson, and D.F. Sun, "Application of Advanced Signal Processing Techniques
to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems," MIT Lincoln
Laboratory Tech. Report 582, (FAA-RD-82-42), Jun 1982.

31



w. F. GABRIEL

B8. T.P. Bronez and J.A. Cadzow, "An Algebraic Approach to Superresolution Array Processing,"
IEEE Trans. Aerospace & Elect. Sys., AES-19, Jan 1983, pp. 123-133.

B9. D.G. Childers, ed., Modern Spectrum Analysis, IEEE Press, New York, N.Y. 1978.

BlO. W.F. Gabriel, "Spectral Analysis and Adaptive Array Superresolution Techniques," Proc. IEEE 68,
Jun 1980, pp. 654-666.

BR1. S.P. Applebaum and D.J. Chapman, "Adaptive Array with Main Beam Constraints," IEEE Trans.
Antenna Propagat. AP-24, Sep 1976, pp. 650-662.

B12. H. Akaike, Statistical Predictor Identification, (Ann. Inst. Statis. Math. 22, p. 205, 1970).

B13. H. Akaike, "A New Look at the Statistical Model Identification," IEEE Trans. Autom. Contr.
AC-19, 1974, pp. 716-723.

B14. M. Wax and T. Kaliath, "Determining the Number of Signals by Information Theoretic Criteria,"
Proc. of the IEEE/ASSP Spectrum Estimation Workshop II, Tampa, FL, Nov 1983 pp. 192-193.

B15. W.F. Gabriel, "A High-Resolution Target-Tracking Concept Using Spectral Estimation Tech-
niques," NRL Report 8797, May 1984.

32



Appendix C
TRACKING BEAMS AND ADAPTIVE DISTORTION

The tracking beams used in Section, An Adaptive Array Tracking Application, are based on the
selection of an adjacent pair of orthogonal uniform illumination beams generated by a Butler matrix
beamformer [C1] transformation. The transformation matrix B for a linear array with half-wavelength
element spacing will have individual matrix components of the form,

Pt~k7Ik K+lJI K +1J
bkm ex m-(C)

where:

m = beam index

k = element index

K = total number of elements.

bl I bb12 1 I blK

b 2 1 I b2 2 1 I b2K

b 3 1 I b3 2 1 I b3K

B= W 2)

bK1 bK2 bKK

The beamformer output vector E is expressed,

E = WE (C3)

Figure Cl(a) illustrates typical sinx/x patterns of an adjacent pair of beams for our 16-element array
example. The familiar sum (1) and difference (A) tracking beam outputs are then obtained from this
adjacent pair via the 3 dB hybrid junction as shown in Fig. C2, where we note that the A beam is in
quadrature phase relationship to the I beam. Expressed in terms of element weights, the I beam
weight vector S and the A beam weight vector D may be written via Eq. (C2),

S= 2 [bm+l + bi]

D = 2 [bm+l - b] (C4)
2

The uniform illumination vectors bm and bm+l result in cosine illuminations for S and D, which are
shown plotted in Fig. CI (b) for our 16-element linear array example.

Monopulse tracking [C21 involves an angle estimate for each pulse (snapshot) containing the tar-
get, and it is computed from the ratio of A/l. From the cosine illumination beams of Fig. Cl, note
that we can form the approximation,
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(a) Adjacent pair of Butler matrix beams
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SPACIAL ANGLE IN DEGREES

(b) Resultant sum and difference beams

Fig. Cl - Tracking beams formed for 16 element linear array
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f S | = C I , 1= C tan | I
I ~1 + cosq, 2 J

where

1+ IT|'J'

8 is the angle of the target from boresight,

B is the angle to the first null of the sum pattern, and

C is a constant which depends upon the particular illuminations.

6 6 6 6 * * BEAMFORMER
OUTPUTS

3 dB
HYBRID

BEAM BEAM

Fig. C2 -Block diagram of tracking beam formation
via Butler matrix beamformer

For our example, C = 3.80 and B = 10.80. Thus, given values of A/I, we can solve for track angle
estimates, 8/B, from Eq. (C5).

Next, let us address track estimate distortion. Whenever one performs spatial filtering as
described in Section, All-Digital Tracking System Concept, a distortion of received plane wavefronts
occurs because the spatial insertion loss generally varies as a function of sin 0.

This problem was first addressed in the literature by Davis, Brennan, and Reed [C3] who pro-
posed an algorithm for estimating the angle of arrival, based on the outputs of adaptively distorted sum
and difference beams. They used approximations to the optimum angle estimator which permitted
correction of distortion at the tracking beam boresight position, and they demonstrated good perfor-
mance via simulation for sidelobe and/or mainbeam interference.

In an all-digital system, we know our adaptive filter weights. Therefore, we can compute the
resultant distortion error throughout the tracking beam region. In Section, All-Digital Tracking System
Concept, above, we showed that it makes no difference whether we apply our quiescent beam weights
to the spatially filtered signals, or the equivalent adaptive weights to the unfiltered signals. Thus, we
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may apply the monopulse sum and difference weights of Eq. (C4) to the spatially filtered output resi-
due signal vector of Eqs. (11, 12) in Section, All-Digital Tracking System Concept, and obtain the
equivalent forms,

I = S'EJ = E'M-S = E'WS (C6)

and

A = D'Ef = E'M-D = E'Wd, (C7)

where W, and Wd are now the equivalent adapted (and distorted) sum and difference beam weights.
The distorted ratio A/E can be computed for any direction vector E, thus giving us the distortion curve
across the entire tracking angle region.
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Appendix D
FORWARD-BACKWARD SUBAPERTURE AVERAGING

This is an excellent technique for increasing the effective averaging of our sample covariance
matrix SCM when needed, and it may readily be implemented if the antenna array elements are identi-
cal and equally spaced. Figure DI illustrates this technique. We form a reduced dimension subaperture
of L elements, where L must be less than the total number of array elements K. Starting from the
left-hand side, the subaperture samples its first snapshot as elements I through L, then bumps to the
right by 1 and samples its second snapshot as elements 2 through (L + 1), then bumps to the right by
1 and samples its third snapshot as elements 3 through (L + 2), etc. After bumping across to the Kth
element, we will have accumulated (K - L + 1) subaperture snapshots from one overall array data
snapshot, such that we can increase our SCM averaging by that same factor. This subaperture motion
from left to right produces what is generally termed "forward averaging." The technique may be applied
to any SCM method. For example, the simple block averaging of Eq. (2) in section, Low-Sidelobe
Eigenvector Constraint becomes

1 N (K-L+I)

= N(K - L + 1) S [E(n,i)E(n,iP'] (Dl)
where E (n,i)' = [E (n), E+1(n), ... , E+LI (n)I and Rf is the new reduced L x L dimension SCM.
Note that E (ni) may be expressed as the matrix product,

E (ni) = IjE (n) (D2)

where Ii is a special L x K rectangular sampling matrix in which the i index denotes the first column
where the identity matrix I begins. For example, the Is matrix for L = 3, K = 6, and i = 2 would be

Ii = [OIlO] (D3)

0 1 0000
I2= 001 000

0 0 1 0 01

TYPICAL APERTURE
--_/AMPLITUDE FUNCTION

* * * * * * * * * * * * * * *-.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FORWARD SHIFT BACKWARD SHIFT

Fig. D1 - Forward-backward shift movement for a reduced
dimension sampling subaperture where L = 4, along a linear
antenna array of K = 15 elements

An I, matrix may be used to reduce the number of computations by multiplying the SCM to obtain

1 (K-L+l)

Rf -(K-L + 1) z [IjRIi(14)
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Equations (D4) and (DI) give similar results, and both are mathematical expressions of the additional
spatial averaging or "smoothing" that is obtained via the moving subaperture technique.

Furthermore, the averaging can be doubled again by reversing our subaperture at the right-hand
side and bumping across to the left-hand side in similar fashion; however, it requires conjugating the
subaperture snapshots. This subaperture motion from right to left produces what is generally termed
"backward-averaging."

If we define the reversed and conjugated vector, Et, in terms of our array element data samples of
equation (A3), then the kth element signal sample becomes

Ek = E*K-k+l; k= 1, 2, 3, ... , K (D5)

The reader can verify that the resulting SCM will be an index-exchanged R>, and that we can combine
the two into a final forward-backward average SCM which is denoted as the reduced L x L matrix Rfb:

Rfb = 1/2 [Rf + Rk]. (D6)

Note that Rfb is a symmetric matrix, but is generally not Toeplitz. References DI and D2 are recom-
mended for further detailed discussion of the technique.

Although forward-backward subaperture averaging is a very simple concept, it usually produces
remarkable improvements in output estimates, and it becomes crucial to processing in the following
situations:

* When only a few data snapshots are available per SCM computation. Note that the method can
be used even under the extreme condition of only a single snapshot.

* When significant coherence exists between spatial sources as for example in multipath situa-
tions involving a specular reflection. For this particular condition, the fields arriving at the
aperture are nonstationary in space and the SCM is not Toeplitz [D1,D3,D4,D5].

A caveat concerning this averaging technique is that, as the dimension L of the subaperture
becomes smaller, the subaperture antenna gain, resolution, and degrees of freedom decrease. Thus,
the advantage of increased averaging must always be balanced against these factors, and it is usually
prudent to process with as large a subaperture dimension as possible.
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